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A FAST APPROXIMATION TO THE COMPLEMENTARY ERROR
FUNCTION FOR USE IN FITTING GAMMA—RAY PEAKS

I. Introduction

The error function and its complement are widely used in fields
such as computational physics, numerical methods and statistical analy-
sis, and specifically in fitting gamma-ray peaks for quantitative
analysis of spectra from germanium detectors. All of these applications
make heavy use of computer calculations. Unfortunately these functions
tend to be relatively slow to calculate precisely on a digital computer.
In program HYPERMET (1), which was developed at the Naval Research Labo-
ratory (NRL) for automatic peak analysis of gamma-ray spectra, the
complementary error function appears in several terms of the peak-shape
function which is used in an iterative least-squares fit to the peaks.
Timing studies showed that the program was spending up to 807 of its
central processing unit (cpu) time in the error-function routine. Since
high precision was not required in this application, a search was made

for a fast approximation to this function.

II. Computation
The error function erf(x) derives its name as the integral of the

normal curve of error,
X 2
erf(x) = (2//1r)‘/; e de.

It is so normalized to have a range of -1 to +1 for =» < x s ®», The

complementary error function is defined by
@ -tz
erfc(x) = (2//w)J/; e dt

=1 - erf(x),

Note: Manusecript submitted February 13, 1979.

A A S A NS B NS0 5

P




It thus has a range of 2 to 0 for =» < x £ », On the Texas Instruments
ASC Model 7 computer at NRL, the double precision (8-bit exponent, 56-bit
mantissa) complementary error function is calculated (2) as follows:

1. For (0 = x £ 1) an 1l1lth order polynomial approximation P;(x)

is used.

2. Within the range (1 £ x < 2.04) various l4th order polynomials
P2(x) are used.

3. Within the range (2.04 < x < 13.306) various functions of the
form e’*zrg(llxz) are used, where P3 is a 1l4th order

polynomial.
4, For (13.306 < x) the function underflows and is set to O.
5. For (x < 0) the following relation is used.

erfc(x) = 2 - erfc(-x)

Most non-linear least-squares optimization routines, including that used
in HYPERMET, require precise derivatives. For the complementary error

function we have

i& (erfc(x)) = - (2/V/w) e-xz

III. Application

In the peak shape function used by HYPERMET, the main term is a
gaussian of width § and amplitude T

£1(x) = T exp(-x2/62).

Added to this is an exponential "skew" term of amplitude a and slope 8
on the negative x side of the peak. When folded with a gaussian,
representative of random electronic noise, this term can be written as

£2(x) = a exp(x/8) cerf(x - x,)
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where the function

cerf(x - xo) = (1/2) erfc(x/§ + 6§/28)

has a range of 1 to 0 for (- < x $ ») and serves to cut off the exponen-
tial part of f; smoothly for large x. The second term in the argument of

erfc introduces an offset by B W - 82/28. The derivative can be written

derf(x - xo) = ﬁ% [cerf(x - xo)]

= - (1/8/7) exp[}(x/G - 6/28)2].

The amplitude a of f; is usually an order of magnitude less than the
amplitude T of f;, and the slope B is usually less than or of the order
of the gaussian width 6. When counting statistics are very good, it is
sometimes necessary, in order to obtain a good fit, to add a "tail" term
f3, functionally identical to f; but with a slope an order of magnitude

larger, and a constant "step"

term f,. Both f3 and fy are an order of
magnitude less than f, in amplitude, and both are also cut off for large
x by one-half the complementary error function. Because the offset term
in the argument of erfc differs for f; and f; and is zero for f3, the
calculation of the function cerf and its derivative derf is required up
to three times at each data channel (corresponding to x) of the region

being fit and for each iteration of the fit.

Iv. Approximation

Since the amplitudes of terms f;, f; and f, in which the complemen-
tary error function appears are small relative to the main gaussian term
f1, since the cutoff term cerf is very different from either 1 or O only
for small absolute x (where f; is large), and since the reasons given
for inclusion of this term in the peak-shape function are largely
empirical, a simpler approximation to cerf should perform just as well
in the fit. (However, whichever approximation is used, its value and the
value of its derivative must be calculated precisely at each channel and




for each iteration in order to avoid cumulative errors during the fitting
process.) Several approximations to the error function are given in
Ref. (3). The following was chosen as sufficiently accurate and conve-

nient for this purpose: let

cutf(x) = (bt + byt? + bat?) exp(-x?)

for x 2 0 and t = 1/(1 + px). The constant p = 0.470 47 and the

polynomial coefficients are

by = 0.174 012 1
b, = 0.047 939 9

by = 0.373 927 8.

For x less than O,

cutf(x) = 1 - cutf(-x).

If wa let

cerf(x) = cutf(x) + e(x),

the magnitude of the error term is stated (3) as
le(x)| s 1.25 x 1075,
The exact derivative is given by
dutf(x) = o (cutf(x))
= - (2x) cutf(x)

- pt2(b; + 2tby + 3t?b3) exp(-x2).
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V. Tests

The functions cutf and dutf were tested on the ASC 7 at NRL for
speed and accuracy against the functions cerf and derf. The ASC is a
two-pipe-line vector-oriented machine which in an overlapped fasion can
retrieve arrays of data, perform simple algebraic manipulations on the
arrays, and store the results. For arrays of length 2 10, this is
usually much more efficient than the corresponding scalar operations on
the data element by element. Many of the standard mathematical functions
have both vector and scalar routines available for their calculation,
and the FORTRAN compiler is written so as to automatically invoke the
vector routines when applicable for processing expressions involving
arrays in the source code. Unfortunately, the complementary error func-

tion is available only as a scalar routine.

For this test two routines (4) were written in FORTRAN to calculate
cutf and dutf for x varying between -5.0 and +4.9 in 100 steps of 0.1
each, which covers a range typical for program HYPERMET. One routine
was written to store intermediate results in arrays in order to compile
efficiently in vector code. The second routine was written to compile
efficiently in scalar code. A third program was written to calculate
cerf and derf for the same steps over the same range. Then the lower
and upper limits of the range of calculation were each incremented 100
times in steps of 0.01 and the calculations repeated, for a total of
10,000 calculations of each function. Finally, the above calculations

were repeated ten times for a grand total of 100,000 calculations of
each function. The source code was compiled and executed in double
precision at three different optional levels of compiler optimization (5),

1. 1I-level, scalar code with direct translation of source
code, no optimization

2. J-level, scalar code with local and global optimization

3. K-level, vector code with local and global optimizatiom.

VI. Accuracy

In Figs. 1 and 2 are plotted the results of the calculation for
cutf and dutf and the errors




epsc(x) = cerf(x) - cutf(x)
epsd(x) = derf(x) - dutf(x)
between x = 0.0 and 5.0.

SN

For negative x, cutf(x) = 1.0 - cutf(-x), while the other curves -
are symmetric about x=0. Over the range of 0 < x < 1.65, the error
curve epsc oscillates between * 1.10 x 10~5. The sign of the error is

A bt OOt s D S

indicated in parentheses and changes at each cusp in the curve as the
error passes through zero. For x > 1.65, epsc declines gradually with
cutf. At x=5, cutf = 7.99 x 10~!3 and lepsc| = 3,08 x 10~!* or about 4%.
Similar behavior is observed for the error epsd in the derivative dutf.

VII. Timing

Table 1 gives the cpu execution times for 100,000 fast-approximation
calculations of cutf and dutf in both the scalar- and vector-coded
versions compared to the times for the full calculation of cerf and derf,
all codes compiled and executed in double precision on the Texas Instru-
ments ASC 7 at NRL. Results are given for three different compiler levels
I, J, and K as described previously. Table 1 shows significant savings
at all compiler levels, with a maximum savings at the K compiler level
for the vector-coded version of the fast approximation, which executes
in 23% of the time required for the full calculation. At the I and J
levels, maximum savings are found for the scalar-coded version, which
executes in about 60% of the time required for the full calculation.

In Table 2 the lines of code needed to calculate the derivatives
were deleted before compilation. Here the savings are similar at the K
level but smaller at the I and J levels. In fact, the vector-coded

version at the I level requires about 13% longer time to execute than
does the full calculation. This is somewhat surprising and apparently
represents the economy of an optimized assembly language code versus an
optimized FORTRAN-compiled code. For the scalar code, this seems to
indicate that large savings can be realized by coding frequently used
functions in assembly language rather than FORTRAN.

|
|
| |
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VIII. Results

In program HYPERMET, subroutine FUNC which calculates the peak-
shape function has been rewritten in order to produce efficient vector
code at the K-level of compiler optimization. This change resulted in a
reduction in execution time to about 40% of that required for the previous
version. The vector-coded fast approxiﬁntion for the functions cutf and
dutf was then added in-line at each of three locations, at the code for
calculating f;, f, and f3 where the functions cerf and derf had been used
previously. With this change another factor of two in execution speed
was achieved. As the final result of these changes, the program HYPERMET
now executes on the ASC 7 in about one-fifth the time required by the

previous version to analyze a typical gamma-ray spectrum.
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Table 1.

Complementary Error Function and Derivatives,
Time (sec.) for 100,000 Calculations

Fast Approximation Full Calculation
Compiler Level Vector Code Scalar Code Scalar Code
I 7.23 5.63 8.82
J 5.50 5.04 8.49
K 1.35 2.86 5.95
Table 2.

Complementary Error Function Only
Time (sec.) for 100,000 Calculations

Fast Approximation Full Calculation
Compiler Level Vector Code Scalar Code Scalar Code
I 5.94 4.85 5.23
J 4.66 4.41 5.10
K 1.19 1.40 5.02
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Fig. 1 - Plot of the fast approximation CUTF to the complementary
error function, and the error EPSC, as defined in the text. Plot-
ted is the log 0 of the absolute value of the functions. The sign
is indicated 1& parentheses above the curve. The cusps in the curve

for EPSC result from sign changes as the function passes through
zZero.,
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Fig. 2 =« Plot of the derivative DUTF of the fast approximation
to the complementary error function CUTF, and the error EPSD
as defined in the text. The sign is indicated in parentheses
above the curve. The cusps in the curve for EPSD result from
sign changes as the function passes through zero.
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APPENDIX

PROGRAM CUTFV

PROGRAM FOR TIMING TESTS OF A RATIONAL APPROXIMATION TO THE
COMPLEMENTARY ERROR FUNCTION CUTF AND ITS DERIVATIVE DUTF

VECTOR CODED VERSION

IMPLICIT REAL#8(A-H,0-Z)

DIMENSION GAUSN(100),T3(100),T1(100),T2(100),U(100)
DIMENSION CUTF(100),DUTF(100)

DIMENSION FT(100),DFT(100),DFX(100)

DATA A1/0.1740121D00/,A2/-0.0479399D00/

DATA A3/0.3739278D00/,AP/0.47047D00/

N=100
DU=0.01D00
DO 1000 KX=1,10
DO 1000 IX=1,100
UO=-5.11D00+DU*DFLOAT (IX)
DO 100 I=1,N
U(I)=U0+0.1DO0*DFLOAT (I)
GAUSN (I)=DEXP (~U(I)#%2)
CONTINUE
K=IDINT(-UO%10.)
DO 200 I=1,K
U(I)=-U(I)
CONTINUE
DO 300 I=1,N
T1(I)=1.D00/(1.DO0+AP#U(I))
T2(I)=T1(I)*T1(I)
T3(I)=T1(I)#T2(I)
FT(I)=A14T1(I)+A2#T2(I)+A3*T3(1)
DFT(I)=A142.D00%A2+T1 (I)+3.D00*A3xT2(I)
DFX(I)==DFT(I)*AP#T2(I)
CONTINUE
DO 400 I=1,N
CUTF(I)=FT(I)*GAUSN(I)
DUTF (I)=DFX (1) #*GAUSN(I)~2.D00%U(T)*CUTF(I)
CONTINUE
DO 500 I=1,K
CUTF(I)=1.D00-CUTF(I)

1000 CONTINUE

STOP
END
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PROGRAM CUTFS

PROGRAM FOR TIMING TESTS OF A RATIONAL APPROXIMATION TO THE
COMPLEMENTARY ERROR FUNCTION CUTF AND ITS DERIVATIVE DUTF
SCALAR CODED VERSION

e
OO0

IMPLICIT REAL#8(A~-H,0~2)

DIMENSION U(100)

DIMENSION CUTF(100),DUTF(100)

DATA A1/0.1740121D00/,A2/-0.0479399D00/
DATA A3/0.3739278D00/,AP/0.47047D00/

N=100
DU=0,01D00
DO 1000 KX=1,10
DO 1000 IX=1,100
UO=~5.11D00+DUxDFLOAT (IX)
DO 100 I=1,N
U(I)=U0+0..1D00*DFLOAT(I)
UA=DABS (U(I))
T=1.D00/(1.DO0+AP*UA)
HN=DEXP (=U(I) ##2)
CUTF (I)=HN*T* (A1+T* (A2+T*A3))
DUTF (I)=~HN*AP*T#T* (A1+T*(2.D00*A2+T*3.D00%A3))
* -2 .DO0%UA*CUTF (I)
100 CONTINUE
K=IDINT (U-UO%10.)
DO 200 I=1,K
200 CUTF(I)=1.D00-CUTF(I)
1000 CONTINUE

STOP
END
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PROGRAM CERF
PROGRAM FOR TIMING TESTS OF THE ASC LIBRARY ROUTINE FOR THE
COMPLEMENTARY ERROR FUNCTION CERF AND ITS DERIVATIVE DERF

s NeNe]

100
1000

IMPLICIT REAL#8(A-H,0-2)
DIMENSION U(100)
DIMENSION CERF(100),DERF(100)

RPI=0.56418935D00
N=100
DU=0.01D00
DO 1000 KX=1,10
DO 1000 IX=1,100
UO=-5.11D00+DU»DFLOAT (IX)
DO 100 I=1,N
U(I)=U0+0.1DO0O*DFLOAT (I)
CERF (1)=0.5DO0*DERFC(U(I))
DERF (I)=~RPI*DEXP (~U(I)#*%2)
CONTINUE
CONTINUE

STOP
END
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